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Abs t rac t  

I t  i~ ~how~ that if ~ne i.~Tmretes s ~ r ~  c ~ i n a t e  quantum velocities ~ ~ a~ 
give~ by [1~ = _~!~t;q ~i (h ~.- ~ ) into ~he ge-~e,r~d cJ~ ~s~,~ L ~ a ~ a n  for a free panicle 
(the total energy), Z, ~ �89 one does not obtain (no m~c.~e;- ~h:~; ordering of the 
o p e m t ~  4 ~, 4 ~, ap_.d ga we r hhe eo~.~2 ~u.m~.am Lagr~eFi~ ~o'~.~rr~r which ~s 
a transformation from --�89 z to generalized coordinates (Gruber, ~971. ~ 972)~ ~ ~- Nva'~ 
by 0 i = i[H,q'] turns out to be the Hermitian part of a more generaiized operator which 

call the ~ota! generalized ~ei~city operator similar to the noOn, on m our pre,oiou, 
m't~eles (Gmber~ t97L 19,T2). 1"his total vel~zity opec.tot realiy determi:~ee, the funda- 
mental s ' ~ c ~  govem-~g our system in Uhe Lagrangim:, fo~au!ation. We show tha~ ff 
is through the total vdociW operator ttmt we make t~,2 transition from c,~a~i~M t~ 
quantum mechanics a~d through our procedure we arrive a~ the correct quan*~um 
I~gr~gian operator. 

i .  Introduction 

In  two previous articles, I (Gruber ,  I971) and I I  (Gruber,  1972), I have 
shown a prescription for  the  t rans i t ion  o f  ciasskM quac,~i~iz s to their 
corresponding q u a n t u m  operators  in generMized ceord{na:a:< These 
prescriptions deal M]th, representing quantt~m mechanicaUy, operators  in 
genera~zed coordinates  corresponding to ciassical functions o f  generalized 
momen ta  and coordinates ,  such as the Hamil tonian o f  the system. Di~]c~Ity 
arises when one tries to represent in genera!ized coordina:es  quan tum 
mechanical  opera tors  corresponding to functions o f  generalized velocities 
and coordinates.  For  exampie, consider the fotk:,~ing: The to~M energy 
o f  a free pa r tMe (the kagrangian)  expressed in ge~eralized coordinates is 
ciassically given by Briilouin (1949) 0 h r o u g h o u t  this article, repeated 
indices denote  Einstein summation)  

L = �89 ~ (L~) 
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where g'.~ are functions o f  fl-~e generz.*,Jzed r and ~ is ~ 
generalized ve|~c~ty. Now if one substhutes the operator ~ gbr b7 the 

.. ~-,'-: i[H,q~ = i ( t lq '  -~q'  b 3  0.2) 

i~to the Lagrangia~ of equation (IA), no matter wha~ t ~  ordering we 
ehoose f m  "* ~* q ,  q , and g~, (that is, f fL =~q~g~4* or L L-- ,J~*(t*g~, etc.) we 
will ~ t  af~.i~�9 at the ecnvec~t quantum Lagrangian ope,-'a~ which is given 
as (Gruber, 1972) 

where g is the Jacobian [Oxt/Oq ~] (Sokolr~ikofl~ 1951) ~f*.he ~ransformafio. 
from Cartesian to generalized coordinates and g~'~ ~ ~he contmvariant 
metric tensor (Gruber, 1972). 

In the following sections we will proce~ to fiud what the fundamea~ 
~ . ~ t y  o.per~.or is ano" how to incorporate it into the classical generalized 
I~g~a~iar, t~ gez t t~ c_r quantum-mechanical Lagran~an operator. 
We wi~ also show j ~  what ~ e  r~!  ~;-_,ificance of  the operator q" ~, given 
e~s ~ * = i[tt,, q~], is. 

Z .Re presentaHon ~fGeneralized Ve~,':i~ ~ Q , J ~ r ; ~  ~#ec::" 
Consider the clasdcal Lagrangian expressed in generalized co~r~.:es; 

L= �89 ~ (L l) 
The g~eral~zed dassicai momentum p~ is given as 

p ,  = = q  

Multiplying both sides of equation (2.t) by g~; we obtain (classically) 

#1 = gt: p~ (2.2) 
This is because �9 

I, j = i  

Now, quantum-mechanical!y, we postuiate (Gruber, 1971, 1972) that 
p~ .-~-iO/Oq ~ (h = I). Thus we no~e that quantum-mechanically, ~ can be 
�9 written as either 

~x ~ = g~J p~ (2.3) 
o r  as  

. ~ - -p ,  gO (2.4) 
since p~ and gt~ do not commute, 

~ Here, H is the Hami|tonia~ given by HW-~V ~= �89 (Gruber, 1971, t972). 



LeA Im comp~te what ~ is, as given by equati0n(|.2)o Since (Cj~bcr, 

&notes the adjoim ofp;), 

~ = t[H,q t} ---- i[~p~ g~pt ,  q.~ 

Since." iq ,Pj] = [qt p~  = i~,f , the former equation beqome~ 

q 1-O,Ig~+g n, ~.5) 

Now because the Her~t ian  part of 4, ~, (~ft)n is given as 

(4f9 ~ = (#,O t + (~,') 
- 2 

~ , e  from ~ (.~3) that 

~ u s  (q'~)~ i s j . ~ 4  ~ given by eq~fio~ (2.~ which w ~  CLcr~w:d ~:~' ~q~.,ation 
(L2). For the I-!ermkian part of(0ff), ( ~ ) . ,  we have 

( ' 1  

2 

Since ?I-=P~ - iF~ w h e r e F f ~ ( t / g ) ~ g / 3 q  ~) (G-ruber, 1971, I972), vfe haw 

= gUp~ _ iF~ gO + p~ gU 

2 
Now using equation (2.6) we have 

(4,~ ~ = ~ ,  _ iF,)gU + gUp, 

= p~gU._ iF;gU + gUp~ 

2 

thus  it is seen that (~ )~  = (~fi)n. It can be similarly shown ~hat 

[(~,0~3 " = [(,~/3q" = ( ~ , 0  ~ " 
thus we find that 

(415" = ( ~ ) "  = [(~/)t]- = [(~Ot]- _ i [ t t ,  q.r] (2.7) 

~nd therefore the operator ~i in equation (1.2) really corresponds to tb.e 
Flermitlan part o f  a more fundamental operator, the 'total" velocity opera- 
�9 t~r .-LJ ,'~r ~;L (nr  [ , ~ _ . q t - ~ 1 ~  
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3. Correct !ncor~ration @the Total Felocity Operators into ~he Lagra~gian 

The following is very analogous to what is ~chieved by G~tber (1972, 
S~'tion 2) with the Harniltonian. 

Since the classical I.zgrangiau should be positive-definite, we ,~,Ate the 
L a ~ i a u L  given by equation (1.I) as 

where (cj~) * denotes the complex=conjugate of ~ ~. Tfiis suggests tha~. the 
quantum operator corresponding to the classical Lagangian be 

Og 

From e q u ~  (2.3) we find ~i~t 

which is just the quantum L~gran~ar~ operator for a free particle-(th-e- 
. . . .  _Ha@ltonian operator for a free pa~ete)  deri~ed in Cn-t~ber'(1972)~ 

For Ln ~ a v ~ - -  - 

Since 
" ~ g ~  

we find " 

For spherical polar coordinates and p~tar coordinates or for transforma- 
tions where g~ is independent of q~, the last three ~er~.~ i~. equation 0~ 
vanish and Lu becomes our quantum Lagra~gian operator for: a free 
pa~ic!e (*:be Hamiltonian for a free particle). Since L~ (rather than L~O 
was derived as the quantum Lagrang~an in a~ u~restricted ~enerat) way, 
this suggests that t~ J rather th~n t~[, be our total generalized coordinates 
velocity operator. 

4. Comments and Discussion 

�9 Wehave shown that there exists a total velocity operator in Zeneralized 
coordinates, (h~=.g~Jpj=-ig~ia/~q J, such that the Hermitian part of 
(~t~), (~) ~)n is the 'measurable ~ velocity operator as derived from the 
.___r r_. ~.m,~tic, n . . a  . . . . . .  ~+~ t ---- .i ~fH-,~n qj, i f  the c!asslcat" _" " l_ag-rau~ian-~ ~n _gen~nL~u- ~:__A 



coordinates~ Lo is w~tcn~ ~ L = �89  (to preserve pos{tiveodefinite- 

~ -  o~rato~" is writte~ as L=~(d#:)*g~r analogous to Uhe 
presca~tions for "~he Hami~onian op=ator  in Gruber (1972). Thug hhr 
operator t) ~ = i[H,q*] is not the fuada,~, entaI velocity operator znd quantum 
prescriptions must be derived from ~g and its adjoint (~r)~ as show~ 
this article. 
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